skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Yun_Hang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Among various types of alternative energy devices, solid oxide fuel cells (SOFCs) operating at low temperatures (300‐600°C) show the advantages for both stationary and mobile electricity production. Proton‐conducting oxides as electrolyte materials play a critical role in the low‐temperature SOFCs (LT‐SOFCs). This review summarizes progress in proton‐conducting solid oxide electrolytes for LT‐SOFCs from materials to devices, with emphases on (1) strategies that have been proposed to tune the structures and properties of proton‐conducting oxides and ceramics, (2) techniques that have been employed for improving the performance of the protonic ceramic‐based SOFCs (known as PCFCs), and (3) challenges and opportunities in the development of proton‐conducting electrolyte‐based PCFCs. 
    more » « less
  2. Abstract The unique chemical and physical properties of graphene and its derivatives (graphene oxide, heteroatom‐doped graphene, and functionalized graphene) have stimulated tremendous efforts and made significant progress in fuel cell applications. This review focuses on the latest advances in the use of graphene‐based materials in electrodes, electrolytes, and bipolar plates for fuel cells. The understanding of structure‐activity relationships of metal‐free heteroatom‐doped graphene and graphene‐supported catalysts was highlighted. The performances and advantages of graphene‐based materials in membranes and bipolar plates were summarized. We also outlined the challenges and perspectives in using graphene‐based materials for fuel cell applications. 
    more » « less